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Abstract

With only a few exceptions, the numerical simulation of cosmic and laboratory hydromagnetic dynamos has been

carried out in the framework of the differential equation method. However, the integral equation method is known to

provide robust and accurate tools for the numerical solution of many problems in other fields of physics. The paper is

intended to facilitate the use of integral equation solvers in dynamo theory. In concrete, the integral equation method is

employed to solve the eigenvalue problem for a hydromagnetic dynamo model with an isotropic helical turbulence

parameter a. For the case of spherical geometry, three examples of the function aðrÞ with steady and oscillatory so-

lutions are considered. A convergence rate proportional to the inverse squared of the number of grid points is achieved.

Based on this method, a convergence accelerating strategy is developed and the convergence rate is improved re-

markably. Typically, quite accurate results can be obtained with a few tens of grid points. In order to demonstrate its

suitability for the treatment of dynamos in other than spherical domains, the method is also applied to a2 dynamos in

rectangular boxes. The magnetic fields and the electric potentials for the first eigenvalues are visualized.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The hydromagnetic dynamo effect is the cause of the magnetic fields of planets, stars, and galaxies

[21,24]. In the last decades much progress has been made in the analytical and numerical understanding of

magnetic field generation in cosmic bodies. Only recently, the homogeneous dynamo effect has been vali-

dated experimentally in large liquid sodium facilities in [13–15,25,35].

The usual numerical method to simulate hydromagnetic dynamos is based on the differential equation

method. In the case of kinematic dynamo models, for which the fluid velocity v is supposed to be given and

unchanged, the relevant differential equation is the induction equation for the magnetic field B,
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¼ r� ðv� BÞ þ 1

l0r
DB; ð1Þ

with l0 and r denoting the permeability of the free space and the electrical conductivity of the fluid,

respectively. Note that the magnetic field has to be source-free:

r � B ¼ 0: ð2Þ

Assuming that there are no external excitations of the magnetic field from outside the considered finite

region, the boundary condition for the magnetic field reads

B ¼ Oðr�3Þ as r ! 1: ð3Þ

For a qualitative understanding of Eq. (1), one should notice that the magnetic field evolution is governed

by the competition between the diffusion and the advection of the field. Without the advection term the

magnetic field would disappear within a typical decay time td ¼ l0rl
2, with l being a typical length scale of

the system. The advection can lead to an increase of B within a kinematic time tk ¼ l=v. If the kinematic

time becomes smaller than the diffusion time, the net effect of the evolution can become positive, so that

magnetic field self-excitation can start. Relating the diffusion time-scale to the kinematic time-scale, we get a

dimensionless number that governs the evolution of the magnetic field. This number is called the magnetic

Reynolds number Rm:

Rm ¼ l0rlv: ð4Þ

Depending on the particular flow pattern, the values of the critical Rm, at which self-excitation occurs, are in

the range of 101; . . . ; 103.
For the more complicated case of dynamically consistent dynamo models, one has to solve simultaneously

the induction equation for the magnetic field and the Navier–Stokes equation for the velocity, in which the

back-reaction of the Lorentz forces on the flow has to be included.

A considerable part of dynamo research has been devoted to magnetic field self-excitation in finite

spherical bodies, such as the Sun or the Earth. Fortunately, for the spherical case the boundary conditions

for the magnetic field can be formulated separately for every degree and order of the spherical harmonics,

so that the treatment of the magnetic fields in the exterior can be avoided.

This pleasant situation changes drastically when dynamos in other than spherical domains are consid-
ered. Then the correct treatment of the boundary conditions becomes non-trivial. In particular, this

problem arises in connection with galactic magnetic fields, and in simulations related to the recent dynamo

experiments [13–15,25,35] which are carried out in cylindrical vessels. There are three ways to circumvent

this problem:

• The correct non-local boundary conditions are replaced by simplified local boundary conditions, e.g.,

‘‘vertical field conditions’’ or ‘‘pseudo-vacuum boundary conditions’’ [5,31], demanding that the mag-

netic field has only a normal component at the boundary. This method is very cheap from the numerical

point of view, but it is of course not correct.
• The real dynamo body is virtually embedded into a larger sphere for which the well-known boundary

conditions for every degree and order of the spherical harmonics can be used. The region between the

real dynamo and the surface of the virtual sphere is thought to be filled by a medium with a lower con-

ductivity than that of the dynamo domain. Scaling this artificial conductivity to lower and lower values,

one can look for the convergence of the results. This method was successfully employed for the simula-

tion of the Karlsruhe dynamo experiment [28,29], where the dynamo module has an aspect ratio (ratio of

height to radius) close to one.
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• The Laplace equation for the magnetic field is solved in the exterior of the dynamo domain, and the

interior solution is matched to the exterior solution by using the correct boundary conditions. This

method, which was used for the simulation of the Riga dynamo experiment [32], is correct but numer-

ically expensive.
This unsatisfactory situation concerning the handling of boundary conditions was our main motivation

to reconsider the integral equation method to dynamos in finite domains [33]. The formulation of this

method for the case of steady dynamos, which is nothing other than the application of Biot–Savart�s law to

dynamos, can already be found in the book of Roberts [30]. Interestingly enough, in Roberts opinion ([30,

p. 74]) this formulation did ‘‘. . .not appear, in general, to be very useful’’. The integral equation method was

used in a few previous papers [6,10–12], in which the effect of boundaries was mostly discarded, however.

The ‘‘velocity–current-formulation’’ by Meir and Schmidt [23] was intended to circumvent the numerical

treatment outside the region of interest. However, the numerical focus of this work laid more on coupled
MHD problems with small magnetic Reynolds number than on dynamo problems.

A concrete result of our recent paper [33] was the formulation of a system of one-dimensional integral

equations for a dynamo model with a spherically symmetric, isotropic helical turbulence parameter a in a

finite sphere, and the re-derivation of the solution found by Krause and Steenbeck [22] for the special case

of constant a.
This system of integral equations for the case of spherically symmetric, isotropic a is also at the root of

the first numerical examples considered in this paper. Our present goal is to study and optimize the per-

formance of numerical schemes to solve the integral equations for dynamos of this sort. The restriction to
spherically symmetric a has the advantage that the equations decouple for every degree and order of the

spherical harmonics. That makes our method comparable to the corresponding integral equation method

for the radial Schr€odinger equation [4,16,17]. From there, and from other applications of the integral

equation method [1,8,9,18,19,27], it is well known that the linear systems arising from the discretization of

integral equations are generally well conditioned. We present the numerical results of an integral equation

solver with a convergence rate proportional to the inverse squared of the number of grid points. We also

show how the convergence can be improved drastically by using a convergence accelerating strategy.

Whereas these examples for the case of spherical geometry illustrate the feasibility of the integral
equation approach and its equivalence with the differential equation approach, they do not demonstrate

any particular improvement with respect to the latter. The main advantage of the integral equation ap-

proach, its suitability for the treatment of dynamos in arbitrary domains, is therefore exemplified by an-

other example which would be very hard to deal within the differential equation approach. Again, we

consider an a2 dynamo, but restrict the electrically conducting and dynamo active domain to a rectangular

box outside which we assume vacuum. For such ‘‘matchbox dynamos’’, we compute the first eigenvalues

and visualize the magnetic field and the electric potential structure. It is shown how the first three eigen-

values, which are different for the case of different side lengths of the box, converge for the case of a cubic
box.
2. Basics

In this section, we compile the necessary formulae which are at the root of our numerical investigation.

For details of the derivation, we refer to our previous paper [33].

Basically, our considerations are restricted to the steady case, i.e., to dynamos with growth rate and

frequency equal to zero. Quite generally [21], the electromotive force (emf) in turbulent flows of conducting

fluids can be written in the form

F ¼ v� Bþ aB� br� B: ð5Þ
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The first term in this equation is the usual emf induced in a fluid flowing with the mean velocity v

under the influence of the magnetic field B. The second term, aB, represents the effect of a helical

turbulence, with a characterizing the helical part of the turbulence that can be derived in the framework
of mean-field magnetohydrodynamics [21]. The concept of the a-effect plays a considerable role in

dynamo theory. The term br� B reflects the decrease of the electrical conductivity due to turbulence.

In the steady case, the current density j is given by

j ¼ rðF�ruÞ; ð6Þ

where r is the conductivity of the fluid and u is the electrostatic potential. With these notations, the

coupled system of integral equations for steady kinematic dynamos can be written in the following form

[30,33]:

BðrÞ ¼ l0r
4p

Z
D

Fðr0Þ � ðr� r0Þ
jr� r0j3

dV 0 � l0r
4p

Z
S
uðs0Þnðs0Þ � r� s0

jr� s0j3
dS0; ð7Þ
uðsÞ ¼ 1

2p

Z
D

Fðr0Þ � ðs� r0Þ
js� r0j3

dV 0 � 1

2p

Z
S
uðs0Þnðs0Þ � s� s0

js� s0j3
dS0; ð8Þ

with l0 being the magnetic permeability of the free space, nðs0Þ denoting the outward directed unit vector at
the boundary point s0, and dS0 denoting an area element at this point. D and S indicate integrations over the

domain of the fluid and its surface, respectively.

Note that in the case of infinite domains with constant conductivity, the electric potential does not

appear. In this case the integral equation system reduces to Eq. (7) without the boundary term. A wealth of

numerical applications of this formulation for infinite domains can be found in the paper by Dobler and

R€adler [6].
In the following sections we will illustrate the general approach (7) and (8) with two different applica-

tions.
3. Spherical dynamos

In this section, a2 dynamos in spherical domains will be considered. For this case a wealth of quasi-

analytical and numerical results are available from the differential equation approach which can be used for

comparison.

3.1. The system of radial integral equations

As usual, we split the magnetic field into a poloidal and a toroidal part according to

BP ¼ r�r� S
r
r

� �
; ð9Þ
BT ¼ r� T
r
r

� �
: ð10Þ

In spherical geometry the defining scalars S and T and the electric potential are expanded in series of
spherical harmonics Ylm:
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Sðr; h;/Þ ¼
X
l;m

slmðrÞYlmðh;/Þ; ð11Þ
T ðr; h;/Þ ¼
X
l;m

tlmðrÞYlmðh;/Þ; ð12Þ
uðr; h;/Þ ¼
X
l;m

ulmðrÞYlmðh;/Þ: ð13Þ

For the special case that the only dynamo source is a spherically symmetric, isotropic a-effect it was shown
[33] that the system of integral equations (7) and (8) for the magnetic field and the electric potential can be

transformed into the following system of integral equations for the expansion coefficients slmðrÞ and tlmðrÞ
of the defining scalars:

slmðrÞ ¼
l0r

2lþ 1

Z r

0

r0lþ1

rl
aðr0Þtlmðr0Þdr0

�
þ
Z R

r

rlþ1

r0l
aðr0Þtlmðr0Þdr0

�
; ð14Þ
tlmðrÞ ¼ l0r aðrÞslmðrÞ

2
4 � rlþ1

Rlþ1
aðRÞslmðRÞ þ

lþ 1

2lþ 1

rlþ1

R2lþ1

Z R

0

r0l
daðr0Þ
dr0

slmðr0Þdr0

� lþ 1

2lþ 1

Z r

0

r0l

rl
daðr0Þ
dr0

slmðr0Þdr0 þ
l

2lþ 1

Z R

r

rlþ1

r0lþ1

daðr0Þ
dr0

slmðr0Þdr0
3
5: ð15Þ

This system of integral equations (14) and (15) is equivalent with the system of differential equations and

boundary conditions

klslm ¼ 1

l0r
d2slm
dr2

�
� lðlþ 1Þ

r2
slm

�
þ aðrÞtlm; ð16Þ
kltlm ¼ 1

l0r
d2tlm
dr2

�
� lðlþ 1Þ

r2
tlm

�
� d

dr
aðrÞ dslm

dr

� �
þ lðlþ 1Þ

r2
aðrÞslm; ð17Þ
tlmðRÞ ¼ R
dslmðrÞ
dr

jr¼R þ ðlþ 1ÞslmðRÞ ¼ 0; ð18Þ

if we set the eigenvalue kl of the differential equation system equal to zero which corresponds to the steady

case.

Note that the effect of the electric potential at the boundary is already incorporated in Eq. (15). The

corresponding term ensures that the boundary conditions (18) of the differential equation system are

automatically fulfilled in the integral equation method.
3.2. Numerical implementation

In this section, we first present a numerical method for the solution of the coupled integral equations (14)

and (15). Then, in order to improve the convergence and accuracy further, a convergence accelerating

strategy is developed.
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3.2.1. The basic integral equation solver

We start with the integral equation system (14) and (15). Setting x ¼ r=R, and introducing the

notations

Gsðx; x0Þ ¼
x0lþ1

xl ; 06 x0 < x;
xlþ1

x0l ; x < x0 6 1;

(
ð19Þ
Gtðx; x0Þ ¼
l

2lþ1
x0l

xl ; 06 x0 < x;
l

2lþ1
xlþ1

x0lþ1 ; x < x0 6 1:

(
ð20Þ

Eqs. (14) and (15) can be rewritten in the following form:

slmðxÞ ¼
l0rR

2

2lþ 1

Z 1

0

Gsðx; x0Þaðx0Þtlmðx0Þdx0
� �

; ð21Þ
tlmðxÞ ¼ l0r aðxÞslmðxÞ
�

� xlþ1að1Þslmð1Þ þ
lþ 1

2lþ 1
xlþ1

Z 1

0

x0l
daðx0Þ
dx0

slmðx0Þdx0

þ
Z 1

0

Gtðx; x0Þ
daðx0Þ
dx0

slmðx0Þdx0 �
Z x

0

x0l

xl
daðx0Þ
dx0

slmðx0Þdx0
�
: ð22Þ

Substituting Eq. (21) into Eq. (22) yields

wtlmðxÞ ¼ ~aðxÞ
Z 1

0

Gsðx; x0Þ~aðx0Þtlmðx0Þdx0 þ
ðlþ 1Þ
2lþ 1

xlþ1

Z 1

0

Z 1

0

x0l
d~aðx0Þ
dx0

~aðx00Þtlmðx00ÞGsðx0; x00Þdx00 dx0

þ
Z 1

0

Z 1

0

Gtðx; x0ÞGsðx0; x00Þ~aðx00Þtlmðx00Þ
d~aðx0Þ
dx0

dx00 dx0 � xlþ1~að1Þ
Z 1

0

Gsð1; x0Þ~aðx0Þtlmðx0Þdx0

�
Z x

0

Z 1

0

x0l

xl
d~aðx0Þ
dx0

Gsðx0; x00Þ~aðx00Þtlðx00Þdx00 dx0; ð23Þ

where we use the definition

w ¼ ð2lþ 1Þ=ðl2
0r

2C2R2Þ; ð24Þ

with C denoting a scaling factor of the function aðxÞ according to the new definition aðxÞ ¼ C~aðxÞ.
Therefore, the integral equation system (21) and (22) is reduced to the single integral equation (23).

For the numerical implementation of Eq. (23), we decided to choose the classical extended trapezoidal

rule. Of course, more sophisticated treatments of the integrals by Gaussian quadratures or Clenshaw–

Curtis quadrature are as well possible. Despite its simplicity, the extended trapezoidal rule is chosen since it

can be easily used as a starting point of a convergence accelerating strategy to be discussed in the following

section.

Choosing N equidistant grid points xi ¼ iDx, with Dx ¼ 1=N , and approximating the integrals by the

extended trapezoidal rule according to

Z 1

0

f ðxÞdx �
XN
i¼1

1

2
ðf ðxi�1Þ þ f ðxiÞÞDx; ð25Þ
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we obtain for the discretization of Eq. (23) the following expression:

wtlmðxiÞ ¼
XN
j¼1

~aðxiÞcjGsðxi; xjÞ~aðxjÞnx

(
þ
XN
k¼1

ckcj
d~aðxkÞ
dx

~aðxjÞGtðxi; xkÞGsðxk; xjÞðnxÞ2

þ lþ 1

2lþ 1
xlþ1
i

XN
k¼1

ckcjxlk
d~aðxkÞ
dx

~aðxjÞGsðxk; xjÞðnxÞ2 � xlþ1
i ~að1:0ÞcjGsð1:0; xjÞ~aðxjÞnx

�
Xi�1

k¼1

xlk
xli

d~aðxkÞ
dx

~aðxjÞcjGsðxk; xjÞðnxÞ2 � 0:5
d~aðxiÞ
dx

~aðxjÞcjGsðxi; xjÞðnxÞ2
)
tlmðxjÞ;

ð26Þ
where ci ¼ 1; i ¼ 1; 2; . . . ;N � 1; cN ¼ 0:5. Eq. (26) may be written in the following matrix form:

At ¼ wt; ð27Þ
where

A ¼ ðaijÞN�N ; ð28Þ

with

aij ¼ ~aðxiÞcjGsðxi; xjÞ~aðxjÞnxþ
XN
k¼1

ckcj
d~aðxkÞ
dx

~aðxjÞGtðxi; xkÞGsðxk; xjÞðnxÞ2

þ lþ 1

2lþ 1
xlþ1
i

XN
k¼1

ckcjxlk
d~aðxkÞ
dx

~aðxjÞGsðxk; xjÞðnxÞ2 � xlþ1
i ~að1:0ÞcjGsð1:0; xjÞ~aðxjÞnx

�
Xi�1

k¼1

xlk
xli

d~aðxkÞ
dx

~aðxjÞcjGsðxk; xjÞðnxÞ2 � 0:5
d~aðxiÞ
dx

~aðxjÞcjGsðxi; xjÞðnxÞ2: ð29Þ

This eigenvalue problem can be solved numerically. First, the matrix A is reduced to the Hessenberg form,

then the QR algorithm can be employed to obtain the eigenvalues w of the matrix A and hence those

magnitudes C of the functions aðxÞ for which steady dynamos exist. It should be pointed out that, except for

the particular case a ¼ const:, the matrix A is non-symmetric, hence the appearance of complex eigenvalues
should be expected.

In the following discussions, the method described in this subsection will be called the integral equation

solver (IES).

3.2.2. Convergence accelerating strategy

The basic idea of the convergence accelerating strategy has been applied in the numerical solutions of

various integral equations [7,19]. This strategy, which is actually based on the Romberg scheme for the

numerical quadrature by a extended trapezoidal rule, appears in the literature under various notations as
extrapolation method [19] or deferred approach to the limit [7].

In this section, this convergence accelerating strategy will be adapted for our eigenvalue problem in order

to improve the convergence and accuracy of the integral equation solver.

It will be shown in Section 4.2 that the convergence rate of the integral equation solver can reach � N�2.

This is also the theoretical error estimation of the calculated eigenvalues obtained from the extended

trapezoidal rule with the step size 1=N under the assumption that the kernel is sufficiently differentiable [7].

So if w is the exact eigenvalue of the integral equation (23) and wð0Þ
0 is the eigenvalue calculated by the

integral equation solver, it is expected [7] that

w ¼ wð0Þ
0 þ lN�2 þOðN�4Þ; ð30Þ
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where l is a constant. In Eq. (30), if doubling the grid number, we have

w ¼ wð1Þ
0 þ 1

4
lN�2 þOðN�4Þ; ð31Þ

where wð1Þ
0 denotes the eigenvalue calculated by using 2N grid points. From Eqs. (30) and (31), we obtain

w ¼ wð0Þ
1 þOðN�4Þ; ð32Þ

where wð0Þ
1 ¼ ð4wð1Þ

0 � wð0Þ
0 Þ=3. Therefore, wð0Þ

1 approximates the exact eigenvalue w with an error which is
OðN�4Þ.

The above idea can be extended and a triangular array of entries wðjÞ
k is obtained. The array is generated

from the first column of eigenvalues obtained from discretizing the integrals in the integral equation (23) by

the extended trapezoidal rule with grid numbers 2jN ðj ¼ 0; 1; 2; . . .Þ.

j ¼ 0 xð0Þ
0

j ¼ 1 wð1Þ
0 wð0Þ

1

j ¼ 2 wð2Þ
0 wð1Þ

1 wð0Þ
2

j ¼ 3 wð3Þ
0 wð2Þ

1 wð1Þ
2 wð0Þ

3

..

. ..
. ..

. ..
.

The entry wðjÞ
k is placed in the ðjþ 1Þth position of the ðk þ 1Þth column (j; k ¼ 0; 1; 2; . . .). In general, the

entries in columns other than the first are obtained by the recurrence relation

wðjÞ
k ¼ ð4kwðjþ1Þ

k�1 � wðjÞ
k�1Þ=ð4k � 1Þ: ð33Þ

This idea discussed in this section will be examined by two examples in Section 4.
3.3. Numerical examples

In this section we will treat some example profiles aðrÞ by the developed integral equation solver. In

order to validate the accuracy of the results they are compared with results known from other methods.

Note that one has to distinguish between the eigenvalues k which appear in the differential equation

system (16)–(18), and the values C as they result from the eigenvalues w of the steady integral equation

system (26). The eigenvalues k of the differential equation system comprise as the real part the growth

rate and as the imaginary part the frequency of the magnetic field mode. Both parts have a physical

meaning. In contrast to that, the values C for the integral equation system give critical values for the
intensity of a, which are only meaningful if they are real. A complex value for C has no physical

meaning, it might only indicate the existence of a complex eigenvalue k in the vicinity of the real part

of the critical value C.
3.3.1. Known results

The example profiles that will be considered are the following (see Fig. 1):

1. aðxÞ ¼ C,
2. aðxÞ ¼ Cx2,
3. aðxÞ ¼ Cð�19:88þ 347:37x2 � 656:71x3 þ 335:52x4Þ,
where C denotes the magnitude of the functions.

The first example represents the well-known Krause–Steenbeck dynamo model, defined by aðxÞ ¼ C. Its
eigenvalues C are known to satisfy the relation Jlþ1=2ðCÞ ¼ 0, with Jlþ1=2 denoting the Bessel functions of



Table 1

Eigenvalues for aðxÞ ¼ C; l ¼ 1

n ¼ 1 n ¼ 2 n ¼ 3

Mathematica 4.49340945790906 7.72525183693770 10.90412165942889

IES

8 4.43504688342757 7.43283337369553 10.09585801749400

16 4.47868738573279 7.65070920628469 10.69544817795845

32 4.48972062163855 7.70652331733384 10.85151520444580

64 4.49248672732462 7.72056385689403 10.89094228165081

128 4.49317874264272 7.72407947557310 10.90082507380551

256 4.49335177705331 7.72495872368822 10.90329740410711

512 4.49339503756767 7.72517855719338 10.90391558878976

AS1

8/16 4.49323421983453 7.72333448381441 10.89531156477993

16/32 4.49339836694047 7.72512802101689 10.90353754660825

32/64 4.49340876255332 7.72524403674743 10.90408464071915

64/128 4.49340941441542 7.72525134846612 10.90411933785708

128/256 4.49340945519018 7.72525180639326 10.90412151420764

256/512 4.49340945773912 7.72525183502844 10.90412165035065

AS2

8/16/32 4.49340931008086 7.72524759016372 10.90408594539681

16/32/64 4.49340945559417 7.72525177112947 10.90412111365987

32/64/128 4.49340945787289 7.72525183591403 10.90412165099960

64/128/256 4.49340945790849 7.72525183692173 10.90412165929768

128/256/512 4.49340945790905 7.72525183693745 10.90412165942685

The first row gives the results of Mathematica. The second row shows the results obtained by the integral equation solver with

consecutively doubling the grid number starting from 8. The third row represents the results obtained by the accelerating strategy one

(AS1): ð4wðjþ1Þ
0 � wðjÞ

0 Þ=3; j ¼ 0; 1; . . . ; 5. The fourth row represents the results obtained by the accelerating strategy two (AS2):

ð16wðjþ1Þ
1 � wðjÞ

1 Þ=15; j ¼ 0, 1, 2, 3, 4.
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Fig. 1. The three considered examples of aðxÞ. Example 1: aðxÞ ¼ C. Example 2: aðxÞ ¼ Cx2. Example 3: aðxÞ ¼ Cð�19:88þ
347:37x2 � 656:71x3 þ 335:52x4Þ.
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degree lþ 1=2 [21]. In the first row of Table 1, we give the first three eigenvalues C for l ¼ 1 which we

compute by the programme ‘‘Mathematica’’. In order to validate later the results of our integral equation

solver, the results are given with 14 digits after the comma.
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Fig. 2 shows the first eight eigenvalues k for l ¼ 1, depending on C, which are labeled by the radial

wavenumber n. These curves result from a differential equation solver based on the shooting technique from

Numerical Recipes [27]. For aðxÞ ¼ C the results of the differential equation solver code were shown to be
equivalent with the exact value at least until 8 digits after the comma. For the remaining two examples we

believe the accuracy of this code to be at least in the same range. For the Krause–Steenbeck dynamo model,

the eigenvalues k are always real (Fig. 2).

This situation changes for the second example function, aðxÞ ¼ Cx2. Fig. 3 shows again the real parts of k
for the first eight eigenvalues for l ¼ 1. It is clearly visible that the curves of two neighbouring eigenvalues

merge at certain points. At these points, two real eigenvalues k turn into a pair of complex conjugated

eigenvalues (although the frequency is not shown in our plot). The corresponding critical values of C are

shown in the first row of Table 2. Here, we give only 8 digits after the comma which are well justified from
the accuracy point of view.

Example 3 has been chosen as it shows a very rich spectral structure, with complex eigenvalues k at the

critical points were the growth rates are zero. Actually, this function provides the astrophysically interesting

example of an oscillatory a2-dynamo, meaning that the eigenvalue with zero growth rate is oscillating

whereas all the other growth rates are less than zero [34]. Fig. 4 shows the spectral structure, with its
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Fig. 2. First example: aðxÞ ¼ C. Growth rates ReðkÞ for the eigenvalues with l ¼ 1; n ¼ 1; . . . ; 8.



Table 2

Eigenvalues for aðxÞ ¼ Cx2

n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4 n ¼ 5

DES 11.46714098 17.15742615 30.20482435 35.92762083 49.02331308

IES

8 10.85648799 16.67863125 26.63454167 42.49377786 79.11841524

16 11.30339950 16.96226288 27.81152422 33.41913581 41.42370422

32 11.42577229 17.10779976 29.60723780 35.27304970 46.58751516

64 11.45677452 17.14499828 30.05610549 35.76666260 48.42948706

128 11.46454789 17.15431823 30.16768664 35.88755487 48.87567516

256 11.46649262 17.15664913 30.19554253 35.91761522 48.98645261

512 11.46697889 17.15723190 30.20250407 35.92512011 49.01410104

AS1

8/16 11.45237001 17.05680675 28.20385174 30.39425513 28.85880054

16/32 11.46656322 17.15631206 30.20580899 35.89102100 48.30878547

32/64 11.46710860 17.15739779 30.20572806 35.93120024 49.04347770

64/128 11.46713901 17.15742488 30.20488035 35.92785229 49.02440453

128/256 11.46714086 17.15742609 30.20482783 35.92763533 49.02337843

256/512 11.46714098 17.15742616 30.20482458 35.92762175 49.02331718

AS2

8/16/32 11.46750944 17.16294574 30.33927281 36.25747206 49.60545113

16/32/64 11.46714496 17.15747017 30.20572266 35.93387885 49.09245718

32/64/128 11.46714104 17.15742668 30.20482384 35.92762909 49.02313298

64/128/256 11.46714098 17.15742617 30.20482433 35.92762087 49.02331002

128/256/512 11.46714098 17.15742617 30.20482436 35.92762084 49.02331310

The first row gives the results of the differential equation solver. The next rows show the results obtained by the integral equation

solver by consecutively doubling the grid number starting with 8. The third row group represents the results obtained by the average

scheme one (AS1): ð4wðjþ1Þ
0 � wðjÞ

0 Þ=3 ðj ¼ 0; 1; . . . ; 5Þ. The fourth row group represents the results obtained by the average scheme two

(AS1): ð16 wðjþ1Þ
1 � wðjÞ

1 Þ=15; j ¼ 0, 1, 2, 3, 4.
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Fig. 4. Third example: aðxÞ ¼ Cð�19:88þ 347:37x2 � 656:71x3 þ 335:52x4Þ. Growth rates for the eigenvalues with l ¼ 1; n ¼ 1; . . . ; 8,
and for l ¼ 2; n ¼ 1, l ¼ 3; n ¼ 1. At the merging points complex conjugated eigenvalues appear, at the splitting points two real ei-

genvalues re-appear. This is a real oscillatory dynamo because the eigenmode which becomes critical first has a complex eigenvalue.
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merging and splitting points where two real eigenvalues turn into a pair of complex conjugated eigenvalues,

and vice versa. More details close to the critical point can be seen in Fig. 5. The corresponding critical

values of C are shown in the first raw of Table 3. The value in parentheses gives the frequency (the
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Fig. 5. Details of Fig. 4. The mode with l ¼ 1; n ¼ 1=2 crosses zero at C ¼ 0 where it is oscillatory. All other mode become critical for

higher values of C.

Table 3

Eigenvalues for aðxÞ ¼ Cð�19:88þ 347:37x2 � 656:71x3 þ 335:52x4Þ

n ¼ 1j2 n ¼ 3 n ¼ 4 n ¼ 5 n ¼ 6j7

DES 1.0000 (4.984) 1.6788 1.9318 2.4544 3.2223 (13.538)

IES

10 0.9581 – 1.0695 1.2174 1.8313 3.3357 2.9734� 0.2389i

30 1.1124� 0.1011i 1.6230 1.9264 2.2805 3.2575� 0.0990i

100 1.1260� 0.1073i 1.6738 1.9313 2.4384 3.3019� 0.1649i

300 1.1273� 0.1079i 1.6783 1.9317 2.4526 3.3214� 0.1777i

1000 1.1274� 0.1079i 1.6788 1.9318 2.4542 3.3237� 0.1790i

3000 1.1274� 0.1079i 1.6788 1.9318 2.4544 3.3238� 0.1792i

The first row shows the critical value of C resulting from the differential equation solver. The values in parentheses in the second

row (only for n ¼ 1j2 and n ¼ 6j7) give the frequency at this point. The remaining rows give the outcomes of the integral equation

solver. The complex values have no precise physical meaning. However, it is interesting that the real parts are not very far from the

correct critical value of C.
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imaginary part of k) at the critical value of C. Here, we give only 4 digits after the comma, as we are less

interested in the accuracy problem than in the problem of complex eigenvalues.

3.3.2. Results of an integral equation solver

Table 1 shows, for the case of constant a, the eigenvalues of C. The first row shows the eigenvalues C
resulting from a solution of the equation J3=2ðxÞ ¼ 0 by Mathematica, the remaining rows show the results

of the IES and of two variants of the accelerated strategy for different grid numbers N . The first variant,
which we call AS1, corresponds to the choice k ¼ 1 in Eq. (33), the second variant, AS2, corresponds to

k ¼ 2. The numbers in the first column are the number of grid points.

Based on these values, Fig. 6 shows the relative error of the results for IES, AS1, and AS2. For the IES,

the error decreases as �N�2. The error is larger for the eigenvalues with higher n. This is no surprise as the

eigenfunctions for higher n are more structured. For a grid number 512, we can obtain an relative accuracy

of the order 10�5. The accuracy can be increased dramatically if the accelerating strategies AS1 and AS2 are

employed. For AS1 the convergence is �N�4, for AS2 it is �N�6. For the latter, and a grid number 512, we

obtain a remarkable accuracy between 10�15 and 10�12. Note that, in order to get accuracies better than
10�9, it was necessary to use the fourfold precision option of the FORTRAN compiler.
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Fig. 6. Relative error of the outcome of the integral equation solver for aðxÞ ¼ C. The comparison is made with results from

Mathematica. (a) Simple integral equation solver. (b) Accelerating strategy 1 (AS1). (c) Accelerating strategy 2 (AS2).
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Now let us consider the convergence for example 2, aðxÞ ¼ Cx2 (Table 2 and Fig. 7). The convergence

rates for IES, AS1, and AS2 are again �N�2, �N�4, and �N�6, respectively. The errors are typically higher

than for the case of constant a, which may have to do with the non-symmetry of the matrix to be inverted.
For AS1 and AS2 we have skipped the last points in Figs. 7 (b) and (c) as we do not have results from the

DES with a higher precision.

The results for example 3 are represented in Table 3. Below the first row that shows the DES results for

the critical value of C we give for two of the columns the value of the frequency that appears at this critical

point. For those complex eigenvalues k, the integral equation method cannot work properly because it is

restricted to the steady, non-oscillatory case. However, it is interesting to observe in the rows below that the

existence of complex eigenvalues of k is mirrored in the existence of complex eigenvalues of C. These
complex values are unphysical; nevertheless their real part is not far from the correct real part, and the
imaginary part indicates oscillatory behaviour.
4. Matchbox dynamos

In this section, we consider so-called ‘‘matchbox dynamos’’, i.e., dynamos in a rectangular box which is

filled by the electrically conducting fluid and surrounded by vacuum. This problem allows us to illustrate
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Fig. 7. Relative error of the outcome of the integral equation solver for aðxÞ ¼ Cx2. The comparison is made with results of a

differential equation solver. (a) Simple integral equation solver. (b) Accelerating strategy 1 (AS1). (c) Accelerating strategy 2 (AS2).
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how to discretize the system of the integral equations (7) and (8) in the general case of non-spherical

domains.
4.1. Numerical implementation

In this section, we develop a numerical scheme to solve Eqs. (7) and (8) directly for the matchbox dy-
namo. In doing so, we have to cope with the singularities of the kernels in this integral equation system.

Actually, many well-developed and efficient analytical and numerical methods are available in the

boundary element method [3,26] to solve the singular integrals, even for integrals with strong singularities.

For details of the treatment of the singularities in Eqs. (7) and (8), we refer to Appendix A.
4.1.1. Numerical scheme

In this section, the scheme developed in Section 3.1 is extended to solve the matchbox dynamo problem

making use of the basic integral equations (7) and (8). Our scheme is very similar to the so-called constant
element method which is widely applied in the framework of the boundary element method [26]. The

difference is that in our scheme the trapezoidal rule is utilized for the discretization of the integrals over

elements in order to improve the convergence and accuracy.
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Firstly, Eqs. (7) and (8) are rewritten in the form

BpðrÞ ¼
l0r
4p

Z
D
Kp;qðr; r0ÞBqðr0ÞdV 0 � l0r

4p

Z
S
Lpðr; s0Þuðs0ÞdS0; ð34Þ
1

2
uðsÞ ¼ 1

4p

Z
D
Mqðs; r0ÞBqðr0ÞdV 0 � 1

4p

Z
S
nqðs0ÞGqðs; s0Þuðs0ÞdS0; ð35Þ

where the conventional Einstein�s summation has been used. D denotes the matchbox, S is the surface of D,
r ¼ ðx; y; zÞT, and r0 ¼ ðx0; y0; z0ÞT. We use the notation

Kp;qðr; r0Þ ¼ �upðr0ÞGqðr; r0Þ þ uiðr0ÞGiðr; r0Þdpq þ �pqiGiðr; r0Þaðr0Þ; ð36Þ
Lpðr; s0Þ ¼ �pqinqðs0ÞGiðr; s0Þ; ð37Þ
Mqðs; r0Þ ¼ �piquiðr0ÞGpðs; r0Þ þ aðr0ÞGqðs; r0Þ; ð38Þ

for p; q; i ¼ 1; 2; 3, with the definition

G1ðr; r0Þ ¼
x� x0

jr� r0j3
; G2ðr; r0Þ ¼

y � y0

jr� r0j3
; G3ðr; r0Þ ¼

z� z0

jr� r0j3
: ð39Þ

As usual, dpq denotes the Kronecker symbol and �pqi is the Levi–Civita symbol.

The matchbox can be expressed as ½0; a� � ½0; b� � ½0; c�, where a, b, and c are the lengths of the three sides
of the matchbox. Now, we divide this matchbox into ðN � 1Þ3 equally sized small boxes Dijk ði; j; k ¼
1; 2; . . . ;N � 1Þ, which can be described as ½xi; xiþ1� � ½yj; yjþ1� � ½zk; zkþ1�. The lengths of the intervals

½xi; xiþ1�, ½yj; yjþ1�, and ½zk; zkþ1� are denoted as Dx, Dy, and Dz, respectively. The six faces of the matchbox are

also discretized in a similar manner. For the faces z ¼ 0 and z ¼ c, they are divided into the small rectangles

½xi; xiþ1� � ½yj; yjþ1� ði; j ¼ 1; . . . ;N � 1Þ; for the faces y ¼ 0 and y ¼ b, they are divided into ½xi; xiþ1� �
½zk; zkþ1� ði; k ¼ 1; 2; . . . ;N � 1Þ; for the faces x ¼ 0 and x ¼ a, they are divided into ½yj; yjþ1� � ½zk; zkþ1�
ðj; k ¼ 1; 2; . . . ;N � 1Þ. In the following, we denote a representative of these small rectangles as

Sis
ij ðis ¼ 1; 2; . . . ; 6Þ which can be expressed as ½xis1;i; x

is
1;iþ1� � ½xis2;j; x

is
2;jþ1� . The lengths of ½xis1;i; x

is
1;iþ1� and

½xis2;j; x
is
2;jþ1� are represented as Dx1 and Dx2, respectively.

The magnetic fields ‘‘sit’’ on the N 3 grid points of the volume (including the surface), whereas the po-

tential ‘‘sits’’ on the 6N 2 � 12N þ 8 grid points of the surface. However, if the grid point is on an edge or a

corner, we take it as two or three different grid points by considering it as located on different faces. Hence,

we have a total of 6N 2 electric potential degrees of freedom.

With these definitions, Eqs. (34) and (35) become

BpðrÞ ¼
l0r
4p

X
i0j0k0

Z
Di0j0k0

Kp;qðr; r0ÞBqðr0ÞdV 0 � l0r
4p

X6

is1¼1

X
i0j0

Z
S
is1
i0j0

Lpðr; s0Þuðs0ÞdS0; ð40Þ
1

2
uðsÞ ¼ 1

4p

X
i0j0k0

Z
Di0j0k0

Mqðs; r0ÞBqðr0ÞdV 0 � 1

4p

X6

is1¼1

X
i0j0

Z
S
is1
i0j0

nqðs0ÞGqðs; s0Þuðs0ÞdS0: ð41Þ

For the integrals over Di0j0k0 , the application of the trapezoidal rule leads to

X
i0j0k0

Z
Di0j0k0

Kp;qðr; r0ÞBqðr0ÞdV 0 �
X
i0j0k0

ci0cj0ck0Kp;qðr; ri0j0k0 ÞBqðri0j0k0 ÞDxDyDz; ð42Þ
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X
i0j0k0

Z
Di0j0k0

Mqðs; r0ÞBqðr0ÞdV 0 �
X
i0j0k0

ci0cj0ck0Mqðs; ri0j0k0 ÞBqðri0j0k0 ÞDxDyDz; ð43Þ

where ci0 is defined as c1 ¼ 0:5; cN ¼ 0:5; ci0 ¼ 1:0; i0 ¼ 2; 3; . . . ;N � 1, ri0j0k0 ¼ ðxi0 ; yj0 ; xk0 ÞT. Similarly, for
the integrals over Sis1

i0j0 , we have

X6

is1¼1

X
i0j0

Z
S
is1
i0j0

Lpðr; s0Þuðs0ÞdS0 ¼
X6

is1¼1

X
i0j0

ci0cj0Lpðr; sis1i0j0 Þuðs
is1
i0j0 ÞDx1Dx2; ð44Þ
X6

is1¼1

X
i0j0

Z
S
is1
i0j0

nqðs0ÞGqðs; s0Þuðs0ÞdS0 ¼
X6

is1¼1

X
i0j0

ci0cj0nqðsis1i0j0 ÞGqðs; sis1i0j0 Þuðs
is1
i0j0 ÞDx1Dx2: ð45Þ

Substituting Eqs. (42)–(45) into Eqs. (40) and (41) and letting r ¼ rijk; s ¼ sisij, we obtain

BpðrijkÞ ¼
l0r
4p

X
i0j0k0

ci0cj0ck0Kp;qðrijk; ri0j0k0 ÞBqðri0j0k0 ÞDxDyDz

� l0r
4p

X6

is1¼1

X
i0j0

ci0cj0Lpðrijk; sis1i0j0 Þuðs
is1
i0j0 ÞDx1Dx2; ð46Þ
1

2
uðsisijÞ ¼

1

4p

X
i0j0k0

ci0cj0ck0Mqðsisij; ri0j0k0 ÞBqðri0j0k0 ÞDxDyDz

� 1

4p

X6

is1¼1

X
i0j0

ci0cj0nqðsis1i0j0 ÞGqðsisij; s
is1
i0j0 Þuðs

is1
i0j0 ÞDx1Dx2; ð47Þ

where i; j; k; i0; j0; k0 ¼ 1; 2; . . . ;N and is; is1 ¼ 1; 2; . . . ; 6.
Note that when rijk belongs to Di0j0k0 , a weak singularity of the first integral of the right-hand side of Eq.

(40) occurs. We can employ the strategy discussed in Appendix A to deal with such a singularity. For
example, we can eliminate a small box ½xiþ1 � 1

8
Dx; xiþ1� � ½yjþ1 � 1

8
Dy; yjþ1� � ½zkþ1 � 1

8
Dz; zkþ1� from Dijk

when dealing with the weak singularity caused by setting r to rijk in the integralZ
Dijk

Kp;qðr; r0ÞBqðr0ÞdV 0:

The overall effect of doing so is equivalent to setting Kp;qðrijk; ri0j0k0 Þ to zero in Eq. (46) when rijk ¼ ri0j0k0 .

A similar technique can be applied to handle the singularity appearing in the second integral of the right-

hand side of Eq. (41). For example, we consider the following integral:Z
Sisij

nqðs0ÞGqðsisij; s0Þuðs0ÞdS0:

Since the point sisij belongs to Sis
ij , it results in a singularity of this integral. We can define a small piece of

surface as Sis
�ij ¼ ½x1;iþ1 � 1

4
Dx1; x1;iþ1� � ½x2;jþ1 � 1

4
Dx2; x2;jþ1�. When proceeding the discretization, we just

replace Sis
ij by Sis

ij � Sis
�ij and neglect the small piece Sis

�ij. This is also equivalent to setting Gqðsisij; sis1i0j0 Þ to zero

when sisij ¼ sis1i0j0 .

Note that similar procedures can be employed to avoid the singularities of the other integrals in Eqs. (7)

and (8).
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Eqs. (46) and (47) can be rewritten in the matrix form

XB ¼ l0rðEXB �DXuÞ; ð48Þ
0:5Xu ¼ HXB � AXu; ð49Þ

where

XB ¼ ðB1ðr111Þ;B2ðr111Þ; . . . ;B2ðrNNN Þ;B3ðrNNN ÞÞT; ð50Þ
Xu ¼ ðuðs111Þ;uðs112Þ; . . . ;uðs6NN ÞÞ
T
; ð51Þ
Aððis � 1ÞN 2 þ ði� 1ÞN þ j; ðis1 � 1ÞN 2 þ ði0 � 1ÞN þ j0Þ ¼ 1

4p
ci0cj0nqðsis1i0j0 ÞGqðsisij; s

is1
i0j0 ÞDx1Dx2; ð52Þ
Hððis � 1ÞN 2 þ ði� 1ÞN þ j; 3N 2ði0 � 1Þ þ 3Nðj0 � 1Þ þ 3ðk0 � 1Þ þ qÞ

¼ 1

4p
ci0cj0ck0Mqðsisij; ri0j0k0 ÞDxDyDz; ð53Þ
Eð3N 2ði� 1Þ þ 3Nðj� 1Þ þ 3ðk � 1Þ þ p; 3N 2ði0 � 1Þ þ 3Nðj0 � 1Þ þ 3ðk0 � 1Þ þ qÞ

¼ 1

4p
ci0cj0ck0Kp;qðrijk; r0i0j0k0 ÞDxDyDz; ð54Þ
Dð3N 2ði� 1Þ þ 3Nðj� 1Þ þ 3ðk � 1Þ þ p; ðis1 � 1ÞN 2 þ ði0 � 1ÞN þ j0Þ

¼ 1

4p
ci0cj0Lpðrijk; sis1i0j0 ÞDx1Dx2; ð55Þ

with p; q ¼ 1; 2; 3, i; j; k; i0; j0; k0 ¼ 1; 2; . . . ;N and is ¼ 1; 2; . . . ; 6.
From Eq. (49), we obtain

Xu ¼ ð0:5Iþ AÞ�1
HXB: ð56Þ

For the inversion of the matrix 0:5Iþ A some particular care is needed. Physically, the electric potential is

defined only up to an additive constant, which implies that the matrix 0:5Iþ A is singular. This difficulty

can be removed by applying the deflation method [2], which is widely used, e.g., in the context of electro-

and magnetoencephalography [20]. Actually, the matrix A can be replaced by

A1 ¼ Aþ 1

6N 2
I1; ð57Þ

where we denote by I1 a quadratic matrix of the order 6N 2 � 6N 2 whose entries are all equal to one. Thus,

Eq. (56) becomes

Xu ¼ ð0:5Iþ A1Þ�1
HXB: ð58Þ

Substituting Eq. (58) into Eq. (48) yields

1

Rm

XB ¼ ðE�Dð0:5Iþ A1Þ�1
HÞXB; ð59Þ
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where Rm is the magnetic Reynolds number. This eigenvalue problem can be solved by the QR method,

which gives the critical magnetic Reynolds numbers and the corresponding modes of the magnetic field and

the electric potential. Although this numerical scheme is presented for the dynamo action in the matchbox,
it can be easily extended to solve steady dynamo problems in other domains.

4.2. Numerical examples

In the following, we will treat a2 dynamos with a constant value a ¼ C within a rectangular box. The

most interesting situation is with vacuum in the exterior of the box. Only for the cubic box we consider also

the case with the exterior space having the same conductivity as the interior, in order to compare the results

with the analytically known ones for spheres of comparable sizes.
In Table 4, we show for the cubic box the first eigenvalues C in dependence on the grid number N in one

direction (the total grid number is then N 3). To the best of our knowledge, there are no values available in

the literature to compare our results with. However, there is at least a plausibility check for our results.

Imagine two spheres, the first one, with radius 1, being embedded neatly into our cubic box, the second one,

with radius
ffiffiffi
3

p
enclosing the box. It should be expected that the eigenvalues for the cubic box are between

those for the two spheres. As can be seen from Table 4, this is indeed the case, both for the case of a

conducting outer space and for an insulating exterior.

The convergence of the eigenvalue for increasing N is illustrated in Fig. 8. We have made a fit of the
eigenvalue data to the free parameters f , g, and h in the function CðNÞ ¼ f þ gN 3h. The parameter h gives

the convergence rate for increasing N , whereas the parameter f gives a reasonable estimate of the true

eigenvalue. For the case of conducting exterior, this value is 2.919 as compared with 3.506 for the enclosed

sphere and 2.431 for the enclosing sphere. For the case of vacuum, the value is 3.656 as compared with

4.493 for the enclosed sphere and 3.116 for the enclosing sphere. Hence, the results are plausible in both

cases.

As for the convergence rate, the value )1.041 indicates a faster convergence than log ~N=~N which was

found by Dobler and R€adler [6] (we use ~N for their total number of grid points in order to distinguish it
from our number N of grid points in one direction). This better convergence rate should be attributed to the

use of the trapezoidal rule for the integration instead of the constant element method, what we have also

confirmed by comparative computations with the latter method.
Table 4

The first eigenvalue for a dynamo with aðrÞ ¼ C within a cubic box of sidelength 2 for the cases of conducting and insulating exterior

Conducting Vacuum

Csphere 3.506 4.493

Csphere=
ffiffiffi
3

p
2.431 3.116

IES

5 3.524 4.254

6 3.292 3.996

7 3.170 3.866

8 3.098 3.793

9 3.052 3.750

10 3.021 3.723

12 2.982 3.694

15 2.952 3.678

The first two rows give, for the sake of comparison, the analytically known critical values for an enclosed sphere with radius 1, and

for an enclosing sphere with radius
ffiffiffi
3

p
. The remaining rows show the numerical results of the integral equation approach for different

grid point numbers N in one direction. Note that there is a threefold degeneracy of the first eigenvalue due to the symmetry of the

problem.



Table 5

The three first eigenvalues for a2 dynamos in a rectangular box, in dependence on the ratios of side lengths

N Side lengths First EV Second EV Third EV

8 1.0:1.0:1.0 3.793 3.793 3.793

8 1.0:1.0:0.8 4.072 4.128 4.128

8 1.0:1.0:0.6 4.524 4.674 4.674

8 1.0:1.0:0.4 5.322 5.515 5.515

8 1.0:0.8:0.6 4.878 4.956 4.500

11 1.0:0.8:0.6 4.728 4.898 4.934

8 1.0:0.8:0.5 5.235 5.350 5.436

2
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4.5

0 2 4 6 8 10 12 14 16
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N

Conducting
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Fig. 8. Convergence of the threefold degenerated lowest eigenvalue for the cubic box with increasing grid points N for the cases of

conducting and vacuum exterior. The fit curves are CðNÞ ¼ 2:919þ 39:544N�2:599 for the case of conducting exterior and

CðNÞ ¼ 3:656þ 91:301N�3:124 for the insulating exterior case, respectively. N is the number of grid points in one direction, hence the

total number of grid points is N 3.
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If we replace the cube by rectangular boxes with different ratios of the side lengths we can see in Table 5

that the threefold degeneration of the eigenvalues is lifted.

For the particular case of a rectangular box with the sidelengths ratio 1.0:0.8:0.6 and a grid number

N ¼ 11, we have visualized the magnetic fields and electric potentials belonging to the three lowest ei-

genvalues (Fig. 9). The structure of the magnetic field with its typical mixture of poloidal and toroidal

components is clearly visible. It becomes evident that the field with the dipole axis perpendicular to the

largest box face has the lowest eigenvalue.
It should be noted that we have also checked the divergence-free condition of the fields and the curl-free

condition in the exterior. Both conditions are fulfilled by the integral equation method with a reasonable

accuracy.
5. Conclusions

We have used the integral equation method to solve numerically the steady kinematic a2 dynamo
problem in finite domains.



Fig. 9. Magnetic fields within the box (left) and electric potentials at the box boundary (right) belonging to the three lowest eigenvalues

of the a2 dynamo in a box with sidelengths ratio 1:0.8:0.6. The corresponding eigenvalues of C are 4.728 (top), 4.898 (middle), and

4.934 (bottom). Evidently, the eigenmode with the dipole axis perpendicular to the largest box face (top) is most easily excitable.
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For spherical domains, our approach is similar to the integral equation method for the solution of the

radial Schr€odinger equation. In this case, with only some tens of grid points the method provides rea-

sonable results for all three considered example profiles aðrÞ. The error decreases with the inverse squared
number of grid points. With the use of a convergence accelerating strategy, the accuracy and the conver-

gence rate can be significantly improved. Interestingly, even oscillating solutions of the dynamo problem

which cannot be reproduced by our steady method are at least mirrored by complex eigenvalues for the

dynamo numbers whose real part is close to the correct critical value.

The particular suitability of the method to handle dynamos in arbitrarily shaped domains was dem-

onstrated by the treatment of an a2 dynamo in rectangular boxes.

In summary, the integral equation method seems to be an attractive tool for the treatment of hydro-

magnetic dynamo problems. The robustness and accuracy of the method encourages to generalize it to the
unsteady case and to more complicated dynamo models.
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Appendix A. The handling of the singularities

In this section, we present the techniques to handle the singularities in the integrals appearing in Eqs. (7)

and (8) in general and for the matchbox in particular. For the integralZ
D

Fðr0Þ � ðr� r0Þ
jr� r0j3

dV 0;

with r belonging to D, we split the domain D into two parts, one being a small subdomain D� which is
usually defined as a ball of a radius � centered at r, the remaining being the region D� D�. Hence the

integral can be decomposed according toZ
D

Fðr0Þ � ðr� r0Þ
jr� r0j3

dV 0 ¼
Z
D�D�

Fðr0Þ � ðr� r0Þ
jr� r0j3

dV 0 þ
Z
D�

Fðr0Þ � ðr� r0Þ
jr� r0j3

dV 0: ðA:1Þ

The first integral on the right-hand side of this equation is a normal integral without any singularity. For

the second integral, the introduction of the spherical coordinates system ðq; h;/Þ leads toZ
D�

Fðr0Þ � ðr� r0Þ
jr� r0j3

dV 0 ¼
Z �

0

Z p

0

Z 2p

0

Fðq; h;/Þ � ðsin h cos/; sin h sin/; cos hÞT

� sin hd/dhdq: ðA:2Þ
Assuming that the function Fðq; h;/Þ is finite, we see that the right-hand side of Eq. (A.2) vanishes in the

limit � ! 0.

Therefore, the considered singularity is a weak singularity. In order to avoid such a singularity in the

numerical computation, we can just discretize the region D� D� instead of D. The error caused by this
procedure can be made as small as desired by taking a small enough value of �. The same procedure can be

applied to the first integral on the right-hand side of Eq. (8) in the case s ¼ r0.

For the integralZ
S
uðs0Þnðs0Þ � s� s0

js� s0j3
dS0;
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appearing in Eq. (8), with s on the surface S, note that the unit vector nðs0Þ tends to be perpendicular to the

vector s� s0 in the case that s ! s0, that is, nðs0Þ � ðs� s0Þ tends to be zero. If defining S� as a small surface of

a size � including the point s, we obtain [3, p. 69]:

lim
�!0

Z
S�

uðs0Þnðs0Þ � s� s0

js� s0j3
dS0 ! 0: ðA:3Þ

A similar strategy as mentioned above can be employed to avoid such a singularity by discretizing the

surface S � S� instead of S.
Now we consider the integralZ

S
uðs0Þnðs0Þ � r� s0

jr� s0j3
dS0; ðA:4Þ

with the point r sitting on the surface S. Denote S� as a small piece of the surface S, which satisfies

js0 � rj < �. Then, the integral (A.4) can be written asZ
S
uðs0Þnðs0Þ � r� s0

jr� s0j3
dS0 ¼

Z
S�S�

uðs0Þnðs0Þ � r� s0

jr� s0j3
dS0 þ

Z
S�

uðs0Þnðs0Þ � r� s0

jr� s0j3
dS0: ðA:5Þ

The first integral of the right-hand side of this equation is a normal integral with no singularity. As for the

second, defining another small disk of a small enough radius g centered at r, we have

lim
�!0

Z
S�

uðs0Þnðs0Þ � r� s0

jr� s0j3
dS0 ¼ lim

�!0
lim
g!0

Z
S��Sg

uðs0Þnðs0Þ � r� s0

jr� s0j3
dS0

¼ uðrÞnðrÞ � lim
�!0

lim
g!0

Z
S��Sg

r� s0

jr� s0j3
dS0;

where 0 < g < �. Introducing the local polar coordinates, dS0 ¼ qdhdq, leads to

lim
g!0

Z
S��Sg

r� s0

jr� s0j3
dS0 ¼ � lim

g!0

Z �

g

1

q
dq

Z 2p

0

ðcos h; sin hÞT dh

¼ � lim
g!0

ln
�

g

Z 2p

0

ðcos h; sin hÞT dh: ðA:6Þ

Since the integrals
R 2p
0

cos hdh and
R 2p
0

sin hdh always vanish, we have

lim
g!0

Z
S��Sg

r� s0

jr� s0j3
dS0 ¼ 0: ðA:7Þ

Therefore,

lim
�!0

Z
S�

uðs0Þnðs0Þ � r� s0

jr� s0j3
dS0 ¼ 0: ðA:8Þ

This indicates that we can also discretize the surface S � S� instead of S in order to avoid such a sin-

gularity in the numerical computation.

For more details of the handling of the various singularities, one may refer to [26] (pp. 7–16).
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